

Copyright 2011, G. Damke & S. Majewski

Introduction to
IRAF

Guillermo Damke (TA)
Steve Majewski (Course instructor)

ASTR 5110 – Fall 2011
University of Virginia

Copyright 2011, G. Damke & S. Majewski

What is IRAF?
●Image Reduction an Analysis Facility,
●“a general purpose software system for the reduction and analysis of

astronomical data.”
●“IRAF is written and supported by the IRAF programming group at the

National Optical Astronomy Observatories (NOAO) in Tucson,
Arizona.”

●Quotes from the IRAF main website: http://iraf.noao.edu
●However, you can find documentation and support at http://iraf.net .

●This site was started in early 2006 as a volunteer effort by the IRAF
development team after NOAO decided to end community user support
and development of IRAF.

●READ THE BEGINNER’S GUIDE TO IRAF:
http://iraf.net/irafdocs/beguide/

●OTHER HELPFUL GUIDES: http://iraf.net/irafdocs/

Copyright 2011, G. Damke & S. Majewski

IRAF basic structure
● IRAF is composed of packages and tasks.

They are ordered hierarchically, like a tree with branches and leaves.
● Each package contains either more packages or tasks.
● What you execute are the tasks.
● Imagine the tree again. Branches are packages and leaves are tasks, then:

●A branch (package) may split into more smaller branches (packages), or
●a branch (package) will end in many leaves (tasks).

● A given package groups related packages or tasks. For example, some packages are:
● imred: Image reduction, contains many packages, and is located in the package

noao;
● twodspec: 2-d spectra, contains two packages inside;
●onedspec: 1-d spectra, contains tasks inside.

● You always load the packages that you need, and then execute their tasks.
● Some packages are loaded by default.
● You can customize which packages are loaded by default in your loginuser.cl file.

Copyright 2011, G. Damke & S. Majewski

Setting up IRAF at UVa
●IRAF stores some environment variables in a file called login.cl.
●Furthermore, it stores the options for any task in a directory named uparm.
●This file and directory are created at the initial setup by the mkiraf

command.
●You can customize what IRAF loads at startup in a file called

loginuser.cl,which has the format of login.cl file.
●Standard practice is to let local mkiraf command make login.cl, and you

customize loginuser.cl version.
●IRAF will look for login.cl and loginuser.cl everytime you start IRAF.
●The usual place to set up IRAF -- which is where login.cl, loginuser.cl and

uparm will live -- is in a directory named iraf in your home directory.
●You will see how to setup IRAF in the next slide.

Copyright 2011, G. Damke & S. Majewski

Setting up IRAF at UVa

●First, you have to define some environment variables:
●Open a terminal, and add the following lines to your .cshrc or your
.cshrc.linux file:

setenv iraf /astro/iraf/iraf/

setenv home $iraf

setenv host $iraf/unix/

setenv hlib $iraf/unix/hlib/

setenv hbin $iraf/unix/bin/

setenv IRAFARCH `$iraf/unix/hlib/irafarch.csh -actual`

●If you have problems, ask Howard Powell or Ricky Patterson.

Copyright 2011, G. Damke & S. Majewski

Setting up IRAF at UVa

Now you can create your iraf directory, and run mkiraf.

You may need to edit your
login.cl file. Uncomment
stdimage and imtype
variables.

set stdimage = imt800

Use: imt2048, imt4096,
imt8192, etc.

set imtype = "fits"

Copyright 2011, G. Damke & S. Majewski

Running IRAF: The xgterm Window

●IRAF uses a special type of terminal called xgterm.
●An xgterm can handle text and graphics (plots).
●In a terminal, open an xgterm by typing:

●% xgterm &

●However, your TA prefers to open an xgterm with a scroll bar and bigger
font size.

In this case, you can add options:
●% xgterm -sbr -fn 9x15 &

●You can find more options by typing:
●% xgterm -help

Copyright 2011, G. Damke & S. Majewski

Running IRAF: The Image Display

●Furthermore, IRAF typically needs an image display. You can choose either
DS9 or Ximtool.

●Open your image display from the xgterm before you launch IRAF. Type:
●$ ds9 &

Or:
●$ ximtool &

Copyright 2011, G. Damke & S. Majewski

Running IRAF: Starting IRAF

●From the xgterm, cd to the iraf directory -- where your login.cl file is -- and
start IRAF by executing ecl.

●ecl stands for enhanced-cl (enhanced command language).
● In the past, you would've run cl. The ecl is an improved version of the cl.
Read about the differences between ecl and cl in IRAF with the command:

ecl> page pkg$ecl/Notes.ecl
●The ecl and the cl handles the IRAF commands, but also allows you to use

Unix commands, as:
● cd
● ls
● pwd
● copy (but use imcopy to copy images in IRAF),
● rm (but use imdelete to delete images in IRAF),
● rename (but use imrename to rename images in IRAF),
● Etc.

Copyright 2011, G. Damke & S. Majewski

Running IRAF

IRAF welcome window.
IRAF prints package names ending in a dot.
IRAF prints task names ending without a dot.

Copyright 2011, G. Damke & S. Majewski

IRAF Packages

 As an example, we will load
the ccdred package, used for ccd
reductions.
 This package is inside the
imred package.
 The package imred is inside
the noao package.
 See the screenshot on the
right:

We print the available
packages by typing:
ecl> ?

We load the noao package. It
contains many packages
(names end with a dot).

Then we load the imred
package. Again, it contains
more packages.

Finally, we load the ccdred
package. It contains tasks, and
names do not end with a dot.

 To unload a package, type:
ecl> bye

Copyright 2011, G. Damke & S. Majewski

IRAF Tasks

 We will ilustrate how
to work with tasks by
using the task display.

 Display is loaded by
default.

 This task is used to
visualize images in
the image display.

 To see the help about a
task, type:

ecl> help task_name

The display task help

Copyright 2011, G. Damke & S. Majewski

IRAF Tasks: Parameters

IRAF lpar

●Use the command lpar to list the
parameters of a task.

ecl> lpar task_name
●Required parameters

● Listed at beginning, without
parentheses.

● Must be specified each time a
command is invoked.

● Appear under USAGE in the
task help.

●Hidden parameters
● Listed in parentheses.

● Not requested when task run.
● Often defaults work well.

●Note that parameters may be:
● String

● yes | no (Boolean)

● Float

● Integer

Copyright 2011, G. Damke & S. Majewski

IRAF Tasks: Editing Parameters

IRAF epar

●Use the command epar to modify
the parameters of a task.

ecl> epar task_name
●Scroll up and down with arrows.
●You can save the parameters by
typing :w
●You can save and exit by typing :q

or :wq or ctrl+d
●You can exit without save by
typing :q!
●You can restore the default params.
by exiting and typing:

ecl> unlearn task_name
●You can execute a task from epar by
typing :go

(check DS9 now!)
●TA Tip: To modify a string, type:

ctrl+a ctrl+u ctrl+l

Copyright 2011, G. Damke & S. Majewski

IRAF Task: Running from Command Line
●A second option to execute tasks is to
type the name of the task and the
required parameters on the ecl
command line (1).
●If you don't enter required
parameters, IRAF will ask you for
them (2).
●You may even pass hidden
parameters by their names (3):

● Boolean parameters are entered
by name+ (yes), or name- (no)

Alternatively: name=yes or
name=no

● Non-boolean parameters use the

name =value format.
●TA Tip: IRAF will recognize the
name of a task as soon as no other task
begins with the same characters you
type in.

For example, try typing disp, lpar
disp, or epar disp.

See (3).

Copyright 2011, G. Damke & S. Majewski

Header Tasks

●To list a header, use imheader.
ecl> imheader image_name

●To list a whole header, use the longheader = yes parameter:
ecl> imheader image_name l+

●To list specific keywords, use hselect.
ecl> hselect image_name $I,kwrd1,kwrd2,etc.
●$I means “image file name”. Then hselect displays image_name, kwrd1,

kwrd2, etc.
●Note that there are no spaces between the keywords!

●To add, edit or delete header keywords, use hedit:
ecl> hedit images fields value
●Check help hedit for full description on usage.

Copyright 2011, G. Damke & S. Majewski

Desiderata
●In IRAF, you can redirect stdout to a text file (>) (>> for appending), as in Unix.
For example, to save hselect output to my_header_entries.txt:

ecl> hselect $I,kwrd1,kwrd2,etc. > my_header_entries.txt
●Most IRAF input parameters accept wildcards as input, as in the Unix terminal.
For example, to use hselect for all of our M17 FITS images:

ecl> hselect m17*.fits $I,kw1,kw2,etc. yes
●Type “e” (without quotes) to see/edit the previous commands (same as scroll up).
● Type “e command” to see/edit the previous call to command.

●Type “flpr” (without quotes) twice everytime a task is interrupted, or if IRAF behaves
abnormally. The flprchache command clears the process cache where tasks live after
they are executed the first time.
●Execute Unix commands that are not recognized or are amiguous to the ecl by
preceding the command with the escape character ! . For example, to run the Unix
commands hostname or whoami:

ecl> !hostname

ecl> !whoami

Copyright 2011, G. Damke & S. Majewski

Desiderata
●NEVER, NEVER, NEVER use ctrl+c in IRAF. It will kill all of IRAF!
●Specify image sections with brackets.

The format is [x1:x2, y1:y2].

For example, to copy an image section of all the columns between line 100 and 200:

ecl> imcopy image1.fits[*,100:200] image2.fits

* means all the lines or columns, depending on where you place it.

●Maybe the most useful “trick” is to use .txt lists as task input or output.

You can define lists of images (for example, your bias, flats, objects, etc.) and use them
for task input or output. To do this:

● Create an input list using the ls command and redirect with >.
● You can copy this list for output using cp, and modify names quickly using vi, or

other text editor (for example, to rename or copy images).
● IRAF recognizes a list of files if you add the @ character at the beginning of the

.txt file name. For example:

ecl> hselect @my_files.txt I$,kwrd1,kwrd2,etc yes

Copyright 2011, G. Damke & S. Majewski

The imexamine Task

● Imexamine is a task to “examine images using image display, plots, and
text”. This task works interactively.

● To run imexamine, type:
ecl> imexamine image_name

If you already displayed your image, just type imexamine
● When you run imexamine, you will see that:

● The image is displayed in your image display.
● The cursor in the image display changes to an open circle. This means that it is waiting for

commands.
● Many imexamine commands plot your data. In this case, a new window will open. (This

type of plots is the reason why you must run IRAF in an xgterm instead of an xterm).
● NEVER, NEVER, NEVER close this plotting window. It will be closed when you exit

IRAF!

● Hit q to quit imexamine.

Copyright 2011, G. Damke & S. Majewski

The imexamine Task

Figure on the right:
●A star radial profile plot.
●The last three numbers in yellow
show the FWHM of the PSF in
pixels.
●Such plots enable you to see if the
image is in focus.
●Extremely important when you are
at the telescope!

An imexamine radial profile plot.

●Imexamine provides multiple types of plots. You just have to type a key
depending on what plot you want:

● r : radial profile plot.
● l : line plot.
● c : column plot.
● s : surface plot.
● e : contour plot.
● j : line 1d gaussian fit plot.
● k : column 1d gaussian fit plot.
● h : histogram plot.

Copyright 2011, G. Damke & S. Majewski

The imexamine Task
●The previous plot commands have hidden parameter files, where you can

customize the tasks.

These tasks are named by the letter for plotting, followed by imexam.

For example, to modify the parameters of the radial profile plot:
ecl> epar rimexam

●Some commands won't draw a plot, but print on the screen. For example:
● a : prints aperture photometry.

●m : prints statistics of the region around the cursor. It is very useful for
characterizing your images for the data reduction.

●There are colon-commands. These commands are composed of the colon
key and a name, or colon key, name and value.

●Type ? when imexamine is running to print the help about all the possible
commands!

Copyright 2011, G. Damke & S. Majewski

The implot Task

●Implot is a task that “plot lines and columns of images”.
●Implot works interactively.
●Implot contains commands and colon-commands.
●However, implot does not display an image as imexamine does.

●See the implot help by typing ? when implot is running.
● In addition, you can see help about the graphics cursor by typing :.help

when implot is running.

●We will see an example in the next slide.

Copyright 2011, G. Damke & S. Majewski

The implot Task

●As an example, we will plot the
average over 100 lines centered at
line 500 for our M17 red image.

ecl> implot m17_dss2red.fits

● In the plotting window, type:
●:a 100

sets average to 100 lines or columns.

●:l 500

does a line plot centered at line 500.

●We will see how to save the plot in the
next slide.

●Hit q to quit implot. Line plot from implot

The axis on the right shows the line or column number
for some of the implot interactive commands.

Copyright 2011, G. Damke & S. Majewski

Saving a Plot As an .eps File
●You can save a plot into a .eps (encapsulated PostScript) with the

command
.snap eps

●For imexamine plots, you have to quit imexamine and type:
ecl> =gcur
● gcur enters the “interactive graphics cursor mode”.

●Type :.help to display the whole help page.

●Now, move to the plotting window and type .snap eps

●For implot plots, you don't have to quit implot. Simply type .snap eps
●A new file called sgi#####.eps (##### means a 5-digit number) will be

created in your current working directory or in your /tmp directory.
●If you need a .png or other image format, you can use the Linux task

convert:
% convert sgi#####.eps my_plot.png (or .jpg, etc.)

Copyright 2011, G. Damke & S. Majewski

Manipulating Image Files

● IRAF includes some special tasks to copy, rename and delete images.
● These tasks are imcopy, imrename, imdelete.
● In the past, image header unit and data unit were stored separated into

two cross-linked files, where data units were kept in directories with
large amounts of disk space.

● IRAF uses .imh extension for headers, and .pix for data.
● These specialized im tasks act on both .imh and .pix files together.
● Although IRAF now works with single FITS files, it is a good practice

to use these tasks when you manipulate image files, and specify the .fits
extension.

Copyright 2011, G. Damke & S. Majewski

Image Arithmetic
●IRAF can perform image math as array operations (recall from last

practical) between images or with constants and functions acting on arrays.

 Some examples:

ecl> imarith image1.fits - image2.fits results1.fits
ecl> imar image1.fits * 1.5 results2.fits
● Division of images with graceful handling of divide by 0:
ecl> imdivide image1.fits image2.fits results1.fits
●Sum/average/median images: (Note how we use a .txt file list as input)

ecl> imsum @input_images.txt results3.fits option='median'
●Apply a function to images: (See imfunction help for the definition of functions)

ecl> imfunction image1.fits results4.fits log10
●Apply boxcar smoothing to an image: (xwindow ywindow → 5 5)

ecl> boxcar image1.fits results5.fits 5 5

Copyright 2011, G. Damke & S. Majewski

Other ecl Capabilities
●The ecl can perform mathematical operations.
Start the line with “=”
●Common functions are allowed: log, log10, exp, sqrt, etc.
●Trigonometric functions in radians: sin, cos, tan, asin, acos, atan, etc.
●Trigonometric functions in degrees: dsin, dcos, dtan, dasin, dacos, etc.
●Beware of integer versus float operatorions.

ecl> = 2/5

ecl> 0

ecl> = 2./5

ecl> 0.4
●Sexagesimal to decimal degrees conversion:

ecl> = 10:36:54

ecl> 10.615

Copyright 2011, G. Damke & S. Majewski

Some Useful Packages

● imred : packages for data reduction of most of NOAO facilities data.
● ccdred : tasks to reduce data.
● plot : general plotting tasks for image data.
● images : packages for image coordinates, filtering, geometric

transformation, matching, display utilities and utilities.
● tables : packages from the STSci for tabular data.
● utilities : a variety of tools. For example, data fitting routines.
● astutil : astronomical utilities. For example, airmasses, (l,b) to (ra,dec)

convertion, etc.
● twodspec : two-d spectra packages. Aperture Extraction and Long Slit.
● onedspec : one-d spectra tasks.

Copyright 2011, G. Damke & S. Majewski

Quitting IRAF

●Use the command logout to end your IRAF session.

ecl> logout

●Or:

ecl> lo

●This will also close the plotting window if IRAF opened it before.
●Remember, NEVER close this window by yourself!

Copyright 2011, G. Damke & S. Majewski

References

●Image Reduction and Analysis Facility (IRAF) NOAO website:

http://iraf.noao.edu/

●IRAF.net:

http://iraf.net/

●IRAF intro exercise by Jeannette Barnes in:

http://iraf.noao.edu/tutorials/tutorials.html

●IRAF built-in help.

http://iraf.net/irafdocs/beguide/
http://iraf.net/irafdocs/beguide/
http://iraf.net/irafdocs/beguide/
http://iraf.net/irafdocs/beguide/
http://iraf.net/irafdocs/beguide/
http://iraf.net/irafdocs/beguide/

	PowerPoint Presentation
	What is IRAF?
	IRAF basic structure
	Setting up IRAF at UVa
	Slide 5
	Slide 6
	Running IRAF: The xgterm Window
	Running IRAF: The Image Display
	Running IRAF: Starting IRAF
	Running IRAF
	IRAF Packages
	IRAF Tasks
	IRAF Tasks: Parameters
	IRAF Tasks: Editing Parameters
	IRAF Task: Running from Command Line
	Header Tasks
	Desiderata
	Slide 18
	The imexamine Task
	Slide 20
	Slide 21
	The implot Task
	Slide 23
	Saving a Plot As an .eps File
	Manipulating Image Files
	Image Arithmetic
	Other ecl Capabilities
	Some Useful Packages
	Quitting IRAF
	References

